• Nolan Weinreich posted an update 4 hours, 12 minutes ago

    A series of halloysite nanotube (HNT)-doped chitosan (CS)/oxidized dextran (ODEX) adhesive hydrogels were developed through a Schiff base reaction. The resultant CS/ODEX/HNT hydrogels could not only form in situ on wounds within only 1 s when injected, but could also adapt to wounds of different shapes and depths after injection. We established four rat and rabbit hemorrhage models and demonstrated that the hydrogels are better than the clinically used gelatin sponge for reducing hemostatic time and blood loss, particularly in arterial and deep noncompressible bleeding wounds. Moreover, the natural antibacterial features of CS and ODEX provided the hydrogels with strong bacteria-killing effects. Consequently, they significantly promoted methicillin-resistant Staphylococcus aureus -infected-wound repair compared to commercial gelatin sponge and silver-alginate antibacterial wound dressing. Hence, our multifunctional hydrogels with facile preparation process and utilization procedure could potentially be used as first-aid biomaterials for rapid hemostasis and infected-wound repair in emergency injury events.Lentinan (SLNT) has been shown to be directly cytotoxic to cancer cells. However, this direct antitumour effect has not been thoroughly investigated in vivo, and the mechanism remains unclear. We aimed to examine the direct antitumour effect of SLNT on human colon cancer and the mechanism in vivo and in vitro. SLNT significantly inhibited tumour growth and induced autophagy and endoplasmic reticulum stress (ERS) in HT-29 cells and tumour-bearing nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. Experiments with the autophagy inhibitors chloroquine (CQ) and 3-methyladenine (3-MA) showed that autophagy facilitated the antitumour effect of SLNT. Moreover, ERS was identified as the common upstream regulator of SLNT-induced increases in Ca2+concentrations, autophagy and apoptosis by using ERS inhibitors. In summary, our study demonstrated that SLNT exerted direct antitumour effects on human colon cancer via ERS-mediated autophagy and apoptosis, providing a novel understanding of SLNT as an anti-colon cancer therapy.Herein, we demonstrate a novel UV-induced decomposable nanocapsule of natural polysaccharide (HA-azo/PDADMAC). The nanocapsules are fabricated based on layer-by-layer co-assembly of anionic azobenzene functionalized hyaluronic acid (HA-azo) and cationic poly diallyl dimethylammonium chloride (PDADMAC). When the nanocapsules are exposed to 365 nm light, ultraviolet photons can trigger the photo-isomerization of azobenzene groups in the framework. The nanocapsules could decompose from large-sized nanocapsules to small fragments. Due to their optimized original size (~180 nm), the nanocapsules can effectively avoid biological barriers, provide a long blood circulation and achieve high tumor accumulation. It can fast eliminate nanocapsules from tumor and release the loaded drugs for chemotherapy after UV-induced dissociation. Besides, HA is an endogenous polysaccharide that shows intrinsic targetability to CD44 receptors on surface of cancer cells. The intracellular experiment shows that the HA-azo/PDADMAC nanocapsules with CD44 targeting ability and UV-controlled intracellular drug release are promising for cancer chemotherapy.Different cyclodextrin-calixarene nanosponges (CyCaNSs) have been characterized by means of FFC-NMR relaxometry, and used as sorbents to remove Pb2+ ions from aqueous solutions. Considering that the removal treatments may involve polluted waters with different characteristics, the adsorption experiments were performed on solutions without and with the addition of background salts, under different operational conditions. The adsorption abilities and affinities of the nanosponges towards Pb2+ ions were investigated by measuring the metal ion concentration by means of Inductively Coupled Plasma Emission Spectroscopy (ICP-OES) and Differential Pulse Anodic Stripping Voltammetry (DP-ASV). The acid-base properties of nanosponges and of metal ion as well as their interactions with the other interacting components of the systems have been considered in the evaluation of adsorption mechanism. Recycling and reuse experiments on the most efficient adsorbents were also performed. On the grounds of the results obtained, post-modified CyCaNSs appear promising materials for designing environmental remediation devices.Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs’ development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs’ development. This review is expected to provide CSMNs’ development roadmap in the context of 21st-century demands for biomedical therapeutics.The progress of bio-based fluorescent smart materials and their multifunctional applications have attained increasing interest in the recent decades. Cellulose is among the cheapest and widespread raw material on earth which can be modified into diverse useful materials. LF3 This review summarizes the chemical modification of cellulose into smart fluorescent materials. This further highlights on the fabrication of the prepared fluorescent materials into films, fibers, paper strips, carbon dots, hydrogels and solutions which are applied for the sensing of toxic metals and anions, pH, bioimaging, common organic solvents, aliphatic and aromatic amines, nitroaromatics, fluorescent printing, coating, and anti-counterfeiting applications. Finally, the discussion about the upcoming investigations, challenges, and options open for the cellulose-based luminescence sensors are communicated. We believe that this review will appeal more and more attention and curiosity for the chemists, biochemists, and chemical engineers working with the synthesis of cellulose-based fluorescent materials for widespread applications.