• Gylling Kemp posted an update 5 hours, 14 minutes ago

    Results highlight the importance of investigating NSSI motives associated with different symptom profiles using a multi-method approach.

    Results highlight the importance of investigating NSSI motives associated with different symptom profiles using a multi-method approach.Treatment of glioblastoma xenografts with chloroquine results in macroautophagy/autophagy inhibition, resulting in a reduction of tumor hypoxia and sensitization to radiation. Preclinical data show that EGFRvIII-expressing glioblastoma may benefit most from chloroquine because of autophagy dependency. This study is the first to explore the safety, pharmacokinetics and maximum tolerated dose of chloroquine in combination with radiotherapy and concurrent daily temozolomide in patients with a newly diagnosed glioblastoma. This study is a single-center, open-label, dose-finding phase I trial. Patients received oral chloroquine daily starting one week before the course of chemoradiation (temozolomide 75 mg/m2/d) until the end of radiotherapy (59.4 Gy/33 fractions). Thirteen patients were included in the study (n = 6 200 mg, n = 3 300 mg, n = 4 400 mg chloroquine). A total of 44 adverse events, possibly related to chloroquine, were registered including electrocardiogram QTc prolongation, irreversible blurred vision and nausea/vomiting resulting in cessation of temozolomide or delay of adjuvant cycles. The maximum tolerated dose was 200 mg chloroquine. Median overall survival was 16 months (range 2-32). Median survival was 11.5 months for EGFRvIII- patients and 20 months for EGFRvIII+ patients. A daily dose of 200 mg chloroquine was determined to be the maximum tolerated dose when combined with radiotherapy and concurrent temozolomide for newly diagnosed glioblastoma. Favorable toxicity and promising overall survival support further clinical studies. Abbreviations AE adverse events; CQ chloroquine; DLT dose-limiting toxicities; EGFR epidermal growth factor receptor; GBM glioblastoma; HCQ hydroxychloroquine; IDH1/2 isocitrate dehydrogenase (NADP(+)) 1/2; MTD maximum tolerated dose; CTC National Cancer Institute Common Toxicity Criteria; MGMT O-6-methylguanine-DNA methyltransferase; OS overall survival; po qd per os quaque die; SAE serious adverse events; TMZ temozolomide; WHO World Health Organization.Tumor metabolism is exemplified by the increased rate of glucose utilization, a biochemical signature of cancer cells. The enhanced glucose hydrolysis enabled by the augmentation of glycolytic flux and the pentose phosphate pathway (PPP) plays a pivotal role in the growth and survival of neoplastic cells. In a recent report, it has been shown that in human breast cancer the GTP binding protein, Rac1 enables resistance to therapy, particularly against the DNA-damaging therapeutics. Significantly, the findings demonstrate that Rac1-dependent chemoresistance involves the upregulation of glycolytic flux as well as PPP. Using multiple approaches, the study demonstrates that disruption of Rac1 activity sensitizes cancer cells to DNA-damaging agents. More importantly, the data uncover a previously unknown PPP regulatory role of Rac1 in breast cancer. Finally, the authors also show the effectiveness and the feasibility of in vivo targeting of Rac1 to enhance the chemosensitivity of breast cancer. selleck kinase inhibitor This elegant report provokes scientific curiosity to expand our understanding of the intricacies of the role and regulation of Rac1 in cancer.Improved methods are needed to assess the structure and activity of lesions on root surfaces in order to improve clinical decision making. Conventional visual and tactile methods for assessing lesion activity are not reliable, and the clinician is often unable to evaluate if the lesion is progressing or has remineralized. An important marker of an arrested lesion is a highly mineralized surface zone that forms when mineral is deposited in the outer layer of the lesion. In vitro studies have shown that a mineralized surface zone influences the kinetics of water evaporation and the surface temperature while drying. Temperature changes can be monitored by measuring the thermal emission with thermal imaging. Studies have also shown that the depth and severity of demineralization and the thickness of the highly mineralized transparent surface zone on arrested lesions can be measured nondestructively with optical coherence tomography (OCT). Thermal imaging at 8-µm to 13-µm wavelengths was completed on 30 test subjects with a suspected active root caries lesion by monitoring thermal emission from the tooth surfaces during 30 s of air drying. Lesions were also evaluated using cross-polarization OCT (CP-OCT) during lesion dehydration to identify transparent surface zones indicative of arrested lesions and determine if shrinkage occurred during drying. The overall thermal emission recorded during drying was significantly different (P less then 0.001) when comparing sound tooth surfaces, lesion areas identified as arrested, and lesion areas identified as active, demonstrating that thermal imaging is a promising approach for the clinical assessment of lesion activity on root surfaces. Ten of the lesions in this study had distinct areas with transparent surface zones that were visible in CP-OCT images. Shrinkage was detected with CP-OCT during drying for 12 lesions. This study confirms that these novel approaches for assessing lesion activity on root surfaces can be implemented in vivo.Periodontal and periapical lesions are infectious inflammatory osteolitytic conditions in which a complex inflammatory immune response mediates bone destruction. However, the uncertainty of a lesion’s progressive or stable phenotype complicates understanding of the cellular and molecular mechanisms triggering lesion activity. Evidence from clinical and preclinical studies of both periodontal and periapical lesions points to a high receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratio as the primary determinant of osteolytic activity, while a low RANKL/OPG ratio is often observed in inactive lesions. Proinflammatory cytokines directly modulate RANKL/OPG expression and consequently drive lesion progression, along with pro-osteoclastogenic support provided by Th1, Th17, and B cells. Conversely, the cooperative action between Th2 and Tregs subsets creates an anti-inflammatory and proreparative milieu associated with lesion stability. Interestingly, the trigger for lesion status switch from active to inactive can originate from an unanticipated RANKL immunoregulatory feedback, involving the induction of Tregs and a host response outcome with immunological tolerance features.