-
Hay Frazier posted an update 5 hours, 14 minutes ago
02). Molecular diagnoses ranged from syndromes affecting multiple organ systems to disorders limited to the cardiovascular system. The average daily hospital spending was lower in the time period post blood collection for rWGS compared to prior (p = 0.003) and further decreased after rWGS results (p = 0.000). The cost was not prohibitive to rWGS implementation in the care of this cohort of infants. rWGS provided timely actionable information that impacted care and there was evidence of decreased hospital spending around rWGS implementation.During the double fertilization process, pollen tubes deliver two sperm cells to an ovule containing the female gametes. In the pollen tube, the vegetative nucleus and sperm cells move together to the apical region where the vegetative nucleus is thought to play a crucial role in controlling the direction and growth of the pollen tube. Here, we report the generation of pollen tubes in Arabidopsis thaliana whose vegetative nucleus and sperm cells are isolated and sealed by callose plugs in the basal region due to apical transport defects induced by mutations in the WPP domain-interacting tail-anchored proteins (WITs) and sperm cell-specific expression of a dominant mutant of the CALLOSE SYNTHASE 3 protein. Through pollen-tube guidance assays, we show that the physiologically anuclear mutant pollen tubes maintain the ability to grow and enter ovules. Our findings provide insight into the sperm cell delivery mechanism and illustrate the independence of the tip-localized vegetative nucleus from directional growth control of the pollen tube.Low-cost anion exchange membrane fuel cells have been investigated as a promising alternative to proton exchange membrane fuel cells for the last decade. The major barriers to the viability of anion exchange membrane fuel cells are their unsatisfactory key components-anion exchange ionomers and membranes. Here, we present a series of durable poly(fluorenyl aryl piperidinium) ionomers and membranes where the membranes possess high OH- conductivity of 208 mS cm-1 at 80 °C, low H2 permeability, excellent mechanical properties (84.5 MPa TS), and 2000 h ex-situ durability in 1 M NaOH at 80 °C, while the ionomers have high water vapor permeability and low phenyl adsorption. Based on our rational design of poly(fluorenyl aryl piperidinium) membranes and ionomers, we demonstrate alkaline fuel cell performances of 2.34 W cm-2 in H2-O2 and 1.25 W cm-2 in H2-air (CO2-free) at 80 °C. The present cells can be operated stably under a 0.2 A cm-2 current density for ~200 h.Understanding the spatiotemporal effects of surface topographies and modulated stiffness and anisotropic stresses of hydrogels on cell growth remains a biophysical challenge. Here we introduce the photolithographic patterning or two-photon laser scanning confocal microscopy patterning of a series of o-nitrobenzylphosphate ester nucleic acid-based polyacrylamide hydrogel films generating periodically-spaced circular patterned domains surrounded by continuous hydrogel matrices. The patterning processes lead to guided modulated stiffness differences between the patterned domains and the surrounding hydrogel matrices, and to the selective functionalization of sub-regions of the films with nucleic acid anchoring tethers. HeLa cells are deposited on the circularly-shaped domains functionalized with the MUC-1 aptamers. Initiation of the hybridization chain reaction by nucleic acid tethers associated with the continuous hydrogel matrix results in stress-induced ordered orthogonal shape-changes on the patterned domains, leading to ordered shapes of cell aggregates bound to the patterns.Nucleosomes are elementary building blocks of chromatin in eukaryotes. They tightly wrap ∼147 DNA base pairs around an octamer of histone proteins. How nucleosome structural dynamics affect genome functioning is not completely clear. Here we report all-atom molecular dynamics simulations of nucleosome core particles at a timescale of 15 microseconds. At this timescale, functional modes of nucleosome dynamics such as spontaneous nucleosomal DNA breathing, unwrapping, twisting, and sliding were observed. We identified atomistic mechanisms of these processes by analyzing the accompanying structural rearrangements of the histone octamer and histone-DNA contacts. Octamer dynamics and plasticity were found to enable DNA unwrapping and sliding. Through multi-scale modeling, we showed that nucleosomal DNA dynamics contribute to significant conformational variability of the chromatin fiber at the supranucleosomal level. Our study further supports mechanistic coupling between fine details of histone dynamics and chromatin functioning, provides a framework for understanding the effects of various chromatin modifications.Conventional approaches to identify secreted factors that regulate homeostasis are limited in their abilities to identify the tissues/cells of origin and destination. We established a platform to identify secreted protein trafficking between organs using an engineered biotin ligase (BirA*G3) that biotinylates, promiscuously, proteins in a subcellular compartment of one tissue. Subsequently, biotinylated proteins are affinity-enriched and identified from distal organs using quantitative mass spectrometry. Applying this approach in Drosophila, we identify 51 muscle-secreted proteins from heads and 269 fat body-secreted proteins from legs/muscles, including CG2145 (human ortholog ENDOU) that binds directly to muscles and promotes activity. In addition, in mice, we identify 291 serum proteins secreted from conditional BirA*G3 embryo stem cell-derived teratomas, including low-abundance proteins with hormonal properties. Our findings indicate that the communication network of secreted proteins is vast. This approach has broad potential across different model systems to identify cell-specific secretomes and mediators of interorgan communication in health or disease.E1 enzymes function as gatekeepers of ubiquitin (Ub) signaling by catalyzing activation and transfer of Ub to tens of cognate E2 conjugating enzymes in a process called E1-E2 transthioesterification. The molecular mechanisms of transthioesterification and the overall architecture of the E1-E2-Ub complex during catalysis are unknown. Here, we determine the structure of a covalently trapped E1-E2-ubiquitin thioester mimetic. Two distinct architectures of the complex are observed, one in which the Ub thioester (Ub(t)) contacts E1 in an open conformation and another in which Ub(t) instead contacts E2 in a drastically different, closed conformation. BTK inhibitor Altogether our structural and biochemical data suggest that these two conformational states represent snapshots of the E1-E2-Ub complex pre- and post-thioester transfer, and are consistent with a model in which catalysis is enhanced by a Ub(t)-mediated affinity switch that drives the reaction forward by promoting productive complex formation or product release depending on the conformational state.