• Campos Rich posted an update 4 hours, 20 minutes ago

    The emergence and global spread of COVID-19, an infectious disease caused by the novel coronavirus SARS-CoV-2, has resulted in a continuing pandemic threat to global health. Nuclear medicine techniques can be used for functional imaging of (patho)physiological processes at the cellular or molecular level and for treatment approaches based on targeted delivery of therapeutic radionuclides. Ongoing development of radiolabeling methods has significantly improved the accessibility of radiopharmaceuticals for in vivo molecular imaging or targeted radionuclide therapy, but their use for biosafety threats such as SARS-CoV-2 is restricted by the contagious nature of these agents. Here, we highlight several potential uses of nuclear medicine in the context of SARS-CoV-2 and COVID-19, many of which could also be performed in laboratories without dedicated containment measures. In addition, we provide a broad overview of experimental or repurposed SARS-CoV-2-targeting drugs and describe how radiolabeled analogs of these compounds could facilitate antiviral drug development and translation to the clinic, reduce the incidence of late-stage failures and possibly provide the basis for radionuclide-based treatment strategies. Selleckchem BGJ398 Based on the continuing threat by emerging coronaviruses and other pathogens, it is anticipated that these applications of nuclear medicine will become a more important part of future antiviral drug development and treatment.The incorporation and effects of hollow mesoporous nanospheres in the system SiO2-CaO (nanoMBGs) containing ipriflavone (IP), a synthetic isoflavone that prevents osteoporosis, were evaluated. Due to their superior porosity and capability to host drugs, these nanoparticles are designed as a potential alternative to conventional bioactive glasses for the treatment of periodontal defects. To identify the endocytic mechanisms by which these nanospheres are incorporated within the MC3T3-E1 cells, five inhibitors (cytochalasin B, cytochalasin D, chlorpromazine, genistein and wortmannin) were used before the addition of these nanoparticles labeled with fluorescein isothiocyanate (FITC-nanoMBGs). The results indicate that nanoMBGs enter the pre-osteoblasts mainly through clathrin-dependent mechanisms and in a lower proportion by macropinocytosis. The present study evidences the active incorporation of nanoMBG-IPs by MC3T3-E1 osteoprogenitor cells that stimulate their differentiation into mature osteoblast phenotype with increased alkaline phosphatase activity. The final aim of this study is to demonstrate the biocompatibility and osteogenic behavior of IP-loaded bioactive nanoparticles to be used for periodontal augmentation purposes and to shed light on internalization mechanisms that determine the incorporation of these nanoparticles into the cells.Modulated electro-hyperthermia (mEHT) is a novel complementary therapy in oncology which is based on the higher conductivity and permittivity of cancerous tissues due to their enhanced glycolytic activity and ionic content compared to healthy normal tissues. We aimed to evaluate the potential of mEHT, inducing local hyperthermia, in the treatment of pulmonary metastatic melanoma. Our primary objective was the optimization of mEHT for targeted lung treatment as well as to identify the mechanism of its potential anti-tumor effect in the B16F10 mouse melanoma pulmonary metastases model while investigating the potential treatment-related side effects of mEHT on normal lung tissue. Repeated treatment of tumor-bearing lungs with mEHT induced significant anti-tumor effects as demonstrated by the lower number of tumor nodules and the downregulation of Ki67 expression in treated tumor cells. mEHT treatment provoked significant DNA double-strand breaks indicated by the increased expression of phosphorylated H2AX protein in treated tumors, although treatment-induced elevation of cleaved/activated caspase-3 expression was insignificant, suggesting the minimal role of apoptosis in this process. The mEHT-related significant increase in p21waf1 positive tumor cells suggested that p21waf1-mediated cell cycle arrest plays an important role in the anti-tumor effect of mEHT on melanoma metastases. Significantly increased CD3+, CD8+ T-lymphocytes, and F4/80+CD11b+ macrophage density in the whole lung and tumor of treated animals emphasizes the mobilizing capability of mEHT on immune cells. In conclusion, mEHT can reduce the growth potential of melanoma, thus offering itself as a complementary therapeutic option to chemo- and/or radiotherapy.Despite the proven clinical value of spinal cord stimulation (SCS) for patients with failed back surgery syndrome (FBSS), factors related to a successful SCS outcome are not yet clearly understood. This study aimed to predict responders for high frequency SCS at 10 kHz (HF-10). Data before implantation and the last available data was extracted for 119 FBSS patients treated with HF-10 SCS. Correlations, logistic regression, linear discriminant analysis, classification and regression trees, random forest, bagging, and boosting were applied. Based on feature selection, trial pain relief, predominant pain location, and the number of previous surgeries were relevant factors for predicting pain relief. To predict responders with 50% pain relief, 58.33% accuracy was obtained with boosting, random forest and bagging. For predicting responders with 30% pain relief, 70.83% accuracy was obtained using logistic regression, linear discriminant analysis, boosting, and classification trees. For predicting pain medication decrease, accuracies above 80% were obtained using logistic regression and linear discriminant analysis. Several machine learning techniques were able to predict responders to HF-10 SCS with an acceptable accuracy. However, none of the techniques revealed a high accuracy. The inconsistent results regarding predictive factors in literature, combined with acceptable accuracy of the currently obtained models, might suggest that routinely collected baseline parameters from clinical practice are not sufficient to consistently predict the SCS response with a high accuracy in the long-term.