• Timmons Kjeldgaard posted an update 3 hours, 54 minutes ago

    COVID-19 is a disease that puts most of the world on lockdown and the search for therapeutic drugs is still ongoing. Therefore, this study used in silico screening to identify natural bioactive compounds from fruits, herbaceous plants, and marine invertebrates that are able to inhibit protease activity in SARS-CoV-2 (PDB 6LU7). We have used extensive screening strategies such as drug likeliness, antiviral activity value prediction, molecular docking, ADME, molecular dynamics (MD) simulation, and MM/GBSA. A total of 17 compounds were shortlisted using Lipinski’s rule in which 5 compounds showed significant predicted antiviral activity values. Among these 5, only 2 compounds, Macrolactin A and Stachyflin, showed good binding energy of -9.22 and -8.00 kcal/mol, respectively, within the binding pocket of the Mpro catalytic residues (HIS 41 and CYS 145). These two compounds were further analyzed to determine their ADME properties. The ADME evaluation of these 2 compounds suggested that they could be effective in developing therapeutic drugs to be used in clinical trials. MD simulations showed that protein-ligand complexes of Macrolactin A and Stachyflin with the target receptor (6LU7) were stable for 100 nanoseconds. The MM/GBSA calculations of Mpro-Macrolactin A complex indicated higher binding free energy (-42.58 ± 6.35 kcal/mol). Dynamic cross-correlation matrix (DCCM) and principal component analysis (PCA) on the residual movement in the MD trajectories further confirmed the stability of Macrolactin A bound state with 6LU7. In conclusion, this study showed that marine natural compound Macrolactin A could be an effective therapeutic inhibitor against SARS-CoV-2 protease (6LU7). learn more Additional in vitro and in vivo validations are strongly needed to determine the efficacy and therapeutic dose of Macrolactin A in biological systems.The coronavirus-disease 2019 (COVID-19) outbreak precipitated prolonged lock-down measures. The subsequent social distancing, isolation, and reduction in mobility increased psychological stress, which may worsen Parkinson’s disease (PD). Therefore, telemedicine has been proposed to provide care to PD patients. To evaluate the effects of lock-down on motor and nonmotor symptoms in PD patients during the COVID-19 pandemic and the feasibility of telemedicine. Motor and nonmotor aspects were longitudinally assessed using structured questionnaires at baseline (in-person, February 2020) and at follow-up (remote web-based video, lock-down) evaluation. Of the seventeen PD patients evaluated at baseline, fourteen agreed to participate in, and completed follow-up evaluations. There was an impairment of nonmotor aspects measured with the MDS-UPDRS part I (p  less then  0.001) during lock-down. Nine patients participated independently in the telemedicine evaluation while five needed help from relatives. Our preliminary findings suggest an impairment of nonmotor symptoms in PD patients and support the feasibility and need for telemedicine in monitoring PD patients during the COVID-19 pandemic, to guarantee optimal assistance with reducing the burden of infection. Our findings also suggest that movement disorder clinics should be carefully considering socio-demographics and clinical features when developing telemedicine programs.Mucositis is one of the most adverse effects of 5-fluorouracil (5-FU) and had no standard drug for treatment. Melatonin is a neurohormone, and can ameliorate radiotherapy-induced small intestinal mucositis. Melatonin encapsulated in niosomes improved its poor bioavailability. Succinyl melatonin, a melatonin derivative, showed prolonged release compared with melatonin. This study investigated the efficacy of melatonin niosome gel (MNG) and succinyl melatonin niosome gel (SNG) in 5-FU-induced small intestinal mucositis treatment in mice. MNG and SNG with particle sizes of 293 and 270 nm were shown to have mucoadhesive potentials. The effect of a daily oral application of MNG, SNG, or fluocinolone acetonide gel (FAG, positive control) was compared to that of the normal group. The body weight, food consumption, histology, Fourier transform infrared (FTIR) spectroscopy, inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β), and malondialdehyde (MDA) in the small intestine were monitored. The results showed decreased %body weight and food consumption in all 5-FU-injected groups compared with the normal group. The MNG and SNG treatments maintained the food consumption and the normal integrity of the small intestines, as evidenced by villus length and crypt depth, similar to the observations in the normal groups. The FTIR spectra showed no change in lipids of the MNG and SNG groups compared with the normal group. Moreover, SNG could reduce IL-1β content to a level that was not different from the level in the normal groups. Therefore, the oral application of MNG and SNG could protect against 5-FU-induced small intestinal mucositis in mice.The cliché of the clergymen or the religious scholars battling against modern science oversimplifies the history of the encounter between modern science and religion, especially in the case of non-Western societies. Many religious scholars, Muslim and Christian, not only did not oppose modern science but used it instrumentally to propagate their religions. Marwa Elshakry, in her brilliant study of Darwin’s opinions among the Arab World, concentrates more on Arab Christians and Sunni Muslims rather than on Shiite Muslims. Muḥammad-Riḍā Iṣfahānī, a Shiite clergyman educated in Islamic theology in Najaf, composed A Critique of Darwin’s Philosophy in 1912 as a review of the theory of evolution. However, even before the publication of this book, controversy concerning this topic had been raging in the Arab World for decades. Under the influence of Muslim scholars (Sunni and Shiite) to reconcile modern science with Islam, Iṣfahānī did his best to gather knowledge of modern biology. He applied his self-taught knowleto demonstrate the possibility of reconciliation between religion in general, and Islam in particular, with modern science. This article provides a detailed consideration of Iṣfahānī’s opinions, identifying his Arabic sources and comparing them to the original non-Arabic sources. I also examine the scientific details of Iṣfahānī’s achievements and the roots of his misunderstandings.