-
Clapp Guldborg posted an update 1 month, 3 weeks ago
Owing to their characteristic structures, metal-organic frameworks (MOFs) are considered as the leading candidate for drug-delivery materials. However, controlling the synthesis of MOFs with uniform morphology and high drug-loading/release efficiencies is still challenging, which greatly limits their applications and promotion. Herein, a multifunctional MOF-based drug-delivery system (DDS) with a controlled pore size of 100-200 nm for both therapeutic and bioimaging purposes was successfully synthesized in one step. Fe-MOF-based microcapsules were synthesized through a competitive coordination method, which was profited from the intrinsic coordination characteristics of the Fe element and the host-guest supramolecular interactions between Fe3+ and polyoxometalates anions. This as-synthesized macroporous DDS could greatly increase the drug-loading/release rate (77%; 83%) and serve as a magnetic resonance (MR) contrast agent. Because an Fe-containing macroporous DDS presents ultrahigh drug loading/release, the obtained 5-FU/Fe-MOF-based microcapsules displayed good biocompatibility, extremely powerful inhibition of tumor growth, and satisfactory MR imaging capability. Milciclib Given all these advantages, this study integrates high therapeutic effect and diagnostic capability via a simple and effective morphology-controlling strategy, aiming at further facilitating the applications of MOFs in multifunctional drug delivery.Despite a myriad of available pharmacotherapies for the treatment of type 2 diabetes (T2D), challenges still exist in achieving glycemic control. Several novel glucose-lowering strategies are currently under clinical investigation, highlighting the need for more robust treatments. Previously, we have shown that suppressing peroxisome proliferator-activated receptor gamma coactivator 1-alpha activity with a small molecule (SR18292, 16) can reduce glucose release from hepatocytes and ameliorate hyperglycemia in diabetic mouse models. Despite structural similarities in 16 to known β-blockers, detailed structure-activity relationship studies described herein have led to the identification of analogues lacking β-adrenergic activity that still maintain the ability to suppress glucagon-induced glucose release from hepatocytes and ameliorate hyperglycemia in diabetic mouse models. Hence, these compounds exert their biological effects in a mechanism that does not include adrenergic signaling. These probe molecules may lead to a new therapeutic approach to treat T2D either as a single agent or in combination therapy.In this study, the effect of sodium dodecyl sulfonate (SDS) on the foam stability of dodecylamine (DDA) and on its adsorption configuration at the gas-liquid interface was investigated. Froth stability experiments, surface tension measurements, time-of-flight secondary-ion mass spectrometry measurements, and molecular dynamics simulation calculations were performed in this investigation. The results revealed that the foam stability of DDA solution was extremely strong, and the addition of SDS could decrease the foam stability when the concentration of DDA was less than a certain value. The decrease in foam stability could be ascribed to several reasons, namely, the big cross-sectional area of SDS at the gas-liquid interface and low adsorption capacity of surfactants at the gas-liquid interface, the high surface tension, the change in the double-layer structure, the small thickness of the gas-liquid interfacial layer, the weak interaction intensity between the head groups of the surfactants and the water molecules, the strong movement ability of the water molecules around the head groups, and the sparse and less upright arrangement configuration of molecules at the gas-liquid interface. These findings can greatly help in solving the strong foam stability problem in DDA flotation and provide a method for reducing foam stability.We report herein the preclinical evaluation of new [64Cu]Cu-gastrin-releasing peptide receptor (GRPR)-targeting tracers, employing the potent peptide antagonist DPhe-Gln-Trp-Ala-VaI-Gly-His-Sta-Leu-NH2 conjugated to NOTA (in 1) or NODAGA (in 2) chelators via a 6-aminohexanoic acid linker. The Cu-1/2 metalated peptides were synthesized by reacting 1/2 with CuCl2 and were characterized by LC-ESI-MS and HR-ESI-MS. Cu-1/2 exhibited high GRPR-binding affinities with IC50 values less then 3 nM, as measured in a competition assay using the GRPR-expressing human PC-3 prostate cancer cell line and [125I]I-Tyr4-BBN as the competing ligand. Tracers [64Cu]Cu-1/2 were prepared in quantitative radiochemical yield (by radio-HPLC), and their identities were confirmed by coelution with their Cu-1/2 standards via comparative HPLC studies. Lipophilicity was measured in 1-octanol/PBS (pH 7.4), and the negative log D7.4 values (≤-1) confirmed the anticipated hydrophilic character for [64Cu]Cu-1/2. Both tracers demonstrated excellent in vitro stability, with ≥98% remaining intact through 24 h at physiological conditions (PBS, pH 7.4, 37 °C). Biodistribution in PC-3 tumor-bearing mice demonstrated good tumor uptake (%ID/g at 4 h 4.34 ± 0.71 for [64Cu]Cu-1, 3.92 ± 1.03 for [64Cu]Cu-2) and rapid renal clearance (≥87% ID at 4 h). Tumor uptake was receptor-mediated, as verified by parallel GRPR-blocking studies. Small-animal PET/CT imaging studies validated the biodistribution data. These preclinical data support that the [64Cu]Cu-1/2 tracers show promise for further development as diagnostic PET imaging agents of GRPR-expressing tumors.
We evaluated the use of three criteria to determine the need for additional treatment of cystic thyroid nodules after their recurrence following ethanol ablation (EA).
In total, 154 patients (malefemale=30124; mean age, 53.4 years; range, 23 to 79 years) with 154 thyroid nodules (49 cystic and 105 predominantly cystic nodules) who presented between January 2014 and August 2017 were enrolled. All patients underwent follow-up ultrasonography (US) 1 month after EA, and were divided into therapeutic success and failure groups. Therapeutic success was defined as the absence of any residual fluid or sufficient volume reduction (≥50%) with improvement of nodule-related symptoms. The therapeutic failure was defined according to three previously suggested criteria for recommending additional treatment nodules with ≥1 mL of remnant fluid (criterion 1), volume reduction <50% (criterion 2), and demonstration of a solid component with vascularity (criterion 3).
Thyroid nodules treated by EA showed significant volume reduction (18.