-
Hald Patterson posted an update 1 month, 3 weeks ago
Atherosclerosis is a chronic inflammatory disease associated with the development of plaques that can be converted into an acute clinical event by thrombosis or plaque rupture. Mesenchymal stem cells (MSCs) exhibit therapeutic effects for the treatment of various diseases, including atherosclerosis. In this study, we show that microRNA-145 (miR-145) is associated with atherosclerosis by microRNA sequencing and bioinformatics analysis. MSC-derived miR-145-rich exosomes could efficiently deliver miR-145 from MSCs to human umbilical vein endothelial cells (HUVECs). Treatment of miR-145-rich exosomes could downregulate JAM-A, inhibit migration in vitro, and reduce atherosclerotic plaque in vivo. Our study suggests that MSC-derived miR-145-rich exosomes have great potential for atherosclerosis prevention.Cardiovascular diseases (CVDs) remain the world’s leading cause of death. Cardiomyocyte autophagy helps maintain normal metabolism and functioning of the heart. Importantly, mounting evidence has revealed that autophagy plays a dual role in CVD pathology. EPZ5676 Under physiological conditions, moderate autophagy maintains cell metabolic balance by degrading and recycling damaged organelles and proteins, and it promotes myocardial survival, but excessive or insufficient autophagy is equally deleterious and contributes to disease progression. Noncoding RNAs (ncRNAs) are a class of RNAs transcribed from the genome, but most ncRNAs do not code for functional proteins. In recent years, increasingly, various ncRNAs have been identified, and they play important regulatory roles in the physiological and pathological processes of organisms, as well as in autophagy. Thus, determining whether ncRNA-regulated autophagy plays a protective role in CVDs or promotes their progression can help us to develop ncRNAs as therapeutic targets in autophagy-related CVDs. In this review, we briefly summarize the regulatory roles of several important ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the autophagy of various CVDs to provide a theoretical basis for the etiology and pathogenesis of CVDs and develop novel therapies to treat CVDs.Immune checkpoint inhibitor (ICI) therapy has achieved remarkable clinical benefit in melanoma and non-small cell lung cancer (NSCLC). Tumor mutational signatures are the fingerprints of endogenous and exogenous factors that have acted throughout tumorigenesis and heterogeneity; however, their association with immune response in ICI-treated samples remains unclear. Here, we leveraged whole-exome sequencing (WES)-based mutational profiles combined with clinicopathologic characteristics from melanoma and NSCLC datasets to examine whether tumor genomic features contribute to clinical benefit of ICI treatment. Mutational data acquired from targeted next-generation sequencing (NGS) assays (MSK-IMPACT panels) were also employed for further corroboration. A mutational signature (known as age-related clock-like processing) characterized by enrichment of C>T mutations at NpCpG trinucleotides were identified to be associated with a worse prognosis and lower tumor mutation load (TML) in both WES and targeted NGS immunotherapy cohorts. We also analyzed gene transcriptomic profiles and identified immune regulation-related gene pathways that were significantly altered in samples with different clock-like signature grouping. Leucocyte subset analysis further revealed that clock-like signature was associated with the reduction of cytotoxic cell infiltration and elevation of regulatory T cells. Overall, our work re-annotated that the age-related clock-like signature was associated with worse prognosis and lower immune activity, offering opportunities to stratify patients into optimal immunotherapy plans based on genomic subtyping.Our previous study demonstrated that the methyl-CpG-binding domain protein 2 (MBD2) mediates vancomycin (VAN)-induced acute kidney injury (AKI). However, the role and regulation of MBD2 in septic AKI are unknown. Herein, MBD2 was induced by lipopolysaccharide (LPS) in Boston University mouse proximal tubules (BUMPTs) and mice. For both in vitro and in vivo experiments, we showed that inhibition of MBD2 by MBD2 small interfering RNA (siRNA) and MBD2-knockout (KO) substantially improved the survival rate and attenuated both LPS and cecal ligation and puncture (CLP)-induced AKI, renal cell apoptosis, and inflammatory factor production. Global genetic expression analyses and in vitro experiments suggest that the expression of protein kinase C eta (PKCη), caused by LPS, is markedly suppressed in MBD2-KO mice and MBD2 siRNA, respectively. Mechanistically, chromatin immunoprecipitation (ChIP) analysis indicates that MBD2 directly binds to promoter region CpG islands of PKCη via suppression of promoter methylation. Furthermore, PKCη siRNA improves the survival rate and attenuates LPS-induced BUMPT cell apoptosis and inflammatory factor production via inactivation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)1/2, which were further verified by PKCη siRNA treatment in CLP-induced AKI. Finally, MBD2-KO mice exhibited CLP-induced renal cell apoptosis and inflammatory factor production by inactivation of PKCη/p38MAPK and ERK1/2 signaling. Taken together, the data indicate that MBD2 mediates septic-induced AKI through the activation of PKCη/p38MAPK and the ERK1/2 axis. MBD2 represents a potential target for treatment of septic AKI.The androgen receptor (AR) plays a critical role in the development of prostate cancer (PCa) through the activation of androgen-induced cellular proliferation genes. Thus, blocking AR-mediated transcriptional activation is expected to inhibit the growth and spread of PCa. Using tailor-made splice-switching locked nucleic acid (LNA) oligonucleotides (SSOs), we successfully redirected splicing of the AR precursor (pre-)mRNA and destabilized the transcripts via the introduction of premature stop codons. Furthermore, the SSOs simultaneously favored production of the AR45 mRNA in lieu of the full-length AR. AR45 is an AR isoform that can attenuate the activity of both full-length and oncogenic forms of AR by binding to their common N-terminal domain (NTD), thereby blocking their transactivation potential. A large screen was subsequently used to identify individual SSOs that could best perform this dual function. The selected SSOs powerfully silence AR expression and modulate the expression of AR-responsive cellular genes.